|
|
@@ -0,0 +1,648 @@ |
|
|
|
/* $OpenBSD: src/sys/sys/queue.h,v 1.38 2013/07/03 15:05:21 fgsch Exp $ */ |
|
|
|
/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */ |
|
|
|
|
|
|
|
/* |
|
|
|
* Copyright (c) 1991, 1993 |
|
|
|
* The Regents of the University of California. All rights reserved. |
|
|
|
* |
|
|
|
* Redistribution and use in source and binary forms, with or without |
|
|
|
* modification, are permitted provided that the following conditions |
|
|
|
* are met: |
|
|
|
* 1. Redistributions of source code must retain the above copyright |
|
|
|
* notice, this list of conditions and the following disclaimer. |
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
|
|
* notice, this list of conditions and the following disclaimer in the |
|
|
|
* documentation and/or other materials provided with the distribution. |
|
|
|
* 3. Neither the name of the University nor the names of its contributors |
|
|
|
* may be used to endorse or promote products derived from this software |
|
|
|
* without specific prior written permission. |
|
|
|
* |
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
|
|
* SUCH DAMAGE. |
|
|
|
* |
|
|
|
* @(#)queue.h 8.5 (Berkeley) 8/20/94 |
|
|
|
*/ |
|
|
|
|
|
|
|
#ifndef _SYS_QUEUE_H_ |
|
|
|
#define _SYS_QUEUE_H_ |
|
|
|
|
|
|
|
/* |
|
|
|
* This file defines five types of data structures: singly-linked lists, |
|
|
|
* lists, simple queues, tail queues, and circular queues. |
|
|
|
* |
|
|
|
* |
|
|
|
* A singly-linked list is headed by a single forward pointer. The elements |
|
|
|
* are singly linked for minimum space and pointer manipulation overhead at |
|
|
|
* the expense of O(n) removal for arbitrary elements. New elements can be |
|
|
|
* added to the list after an existing element or at the head of the list. |
|
|
|
* Elements being removed from the head of the list should use the explicit |
|
|
|
* macro for this purpose for optimum efficiency. A singly-linked list may |
|
|
|
* only be traversed in the forward direction. Singly-linked lists are ideal |
|
|
|
* for applications with large datasets and few or no removals or for |
|
|
|
* implementing a LIFO queue. |
|
|
|
* |
|
|
|
* A list is headed by a single forward pointer (or an array of forward |
|
|
|
* pointers for a hash table header). The elements are doubly linked |
|
|
|
* so that an arbitrary element can be removed without a need to |
|
|
|
* traverse the list. New elements can be added to the list before |
|
|
|
* or after an existing element or at the head of the list. A list |
|
|
|
* may only be traversed in the forward direction. |
|
|
|
* |
|
|
|
* A simple queue is headed by a pair of pointers, one the head of the |
|
|
|
* list and the other to the tail of the list. The elements are singly |
|
|
|
* linked to save space, so elements can only be removed from the |
|
|
|
* head of the list. New elements can be added to the list before or after |
|
|
|
* an existing element, at the head of the list, or at the end of the |
|
|
|
* list. A simple queue may only be traversed in the forward direction. |
|
|
|
* |
|
|
|
* A tail queue is headed by a pair of pointers, one to the head of the |
|
|
|
* list and the other to the tail of the list. The elements are doubly |
|
|
|
* linked so that an arbitrary element can be removed without a need to |
|
|
|
* traverse the list. New elements can be added to the list before or |
|
|
|
* after an existing element, at the head of the list, or at the end of |
|
|
|
* the list. A tail queue may be traversed in either direction. |
|
|
|
* |
|
|
|
* A circle queue is headed by a pair of pointers, one to the head of the |
|
|
|
* list and the other to the tail of the list. The elements are doubly |
|
|
|
* linked so that an arbitrary element can be removed without a need to |
|
|
|
* traverse the list. New elements can be added to the list before or after |
|
|
|
* an existing element, at the head of the list, or at the end of the list. |
|
|
|
* A circle queue may be traversed in either direction, but has a more |
|
|
|
* complex end of list detection. |
|
|
|
* |
|
|
|
* For details on the use of these macros, see the queue(3) manual page. |
|
|
|
*/ |
|
|
|
|
|
|
|
#if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC)) |
|
|
|
#define _Q_INVALIDATE(a) (a) = ((void *)-1) |
|
|
|
#else |
|
|
|
#define _Q_INVALIDATE(a) |
|
|
|
#endif |
|
|
|
|
|
|
|
/* |
|
|
|
* Singly-linked List definitions. |
|
|
|
*/ |
|
|
|
#define SLIST_HEAD(name, type) \ |
|
|
|
struct name { \ |
|
|
|
struct type *slh_first; /* first element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
#define SLIST_HEAD_INITIALIZER(head) \ |
|
|
|
{ NULL } |
|
|
|
|
|
|
|
#define SLIST_ENTRY(type) \ |
|
|
|
struct { \ |
|
|
|
struct type *sle_next; /* next element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Singly-linked List access methods. |
|
|
|
*/ |
|
|
|
#define SLIST_FIRST(head) ((head)->slh_first) |
|
|
|
#define SLIST_END(head) NULL |
|
|
|
#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head)) |
|
|
|
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next) |
|
|
|
|
|
|
|
#define SLIST_FOREACH(var, head, field) \ |
|
|
|
for((var) = SLIST_FIRST(head); \ |
|
|
|
(var) != SLIST_END(head); \ |
|
|
|
(var) = SLIST_NEXT(var, field)) |
|
|
|
|
|
|
|
#define SLIST_FOREACH_SAFE(var, head, field, tvar) \ |
|
|
|
for ((var) = SLIST_FIRST(head); \ |
|
|
|
(var) && ((tvar) = SLIST_NEXT(var, field), 1); \ |
|
|
|
(var) = (tvar)) |
|
|
|
|
|
|
|
/* |
|
|
|
* Singly-linked List functions. |
|
|
|
*/ |
|
|
|
#define SLIST_INIT(head) { \ |
|
|
|
SLIST_FIRST(head) = SLIST_END(head); \ |
|
|
|
} |
|
|
|
|
|
|
|
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ |
|
|
|
(elm)->field.sle_next = (slistelm)->field.sle_next; \ |
|
|
|
(slistelm)->field.sle_next = (elm); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define SLIST_INSERT_HEAD(head, elm, field) do { \ |
|
|
|
(elm)->field.sle_next = (head)->slh_first; \ |
|
|
|
(head)->slh_first = (elm); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define SLIST_REMOVE_AFTER(elm, field) do { \ |
|
|
|
(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define SLIST_REMOVE_HEAD(head, field) do { \ |
|
|
|
(head)->slh_first = (head)->slh_first->field.sle_next; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define SLIST_REMOVE(head, elm, type, field) do { \ |
|
|
|
if ((head)->slh_first == (elm)) { \ |
|
|
|
SLIST_REMOVE_HEAD((head), field); \ |
|
|
|
} else { \ |
|
|
|
struct type *curelm = (head)->slh_first; \ |
|
|
|
\ |
|
|
|
while (curelm->field.sle_next != (elm)) \ |
|
|
|
curelm = curelm->field.sle_next; \ |
|
|
|
curelm->field.sle_next = \ |
|
|
|
curelm->field.sle_next->field.sle_next; \ |
|
|
|
_Q_INVALIDATE((elm)->field.sle_next); \ |
|
|
|
} \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
/* |
|
|
|
* List definitions. |
|
|
|
*/ |
|
|
|
#define LIST_HEAD(name, type) \ |
|
|
|
struct name { \ |
|
|
|
struct type *lh_first; /* first element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
#define LIST_HEAD_INITIALIZER(head) \ |
|
|
|
{ NULL } |
|
|
|
|
|
|
|
#define LIST_ENTRY(type) \ |
|
|
|
struct { \ |
|
|
|
struct type *le_next; /* next element */ \ |
|
|
|
struct type **le_prev; /* address of previous next element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* List access methods |
|
|
|
*/ |
|
|
|
#define LIST_FIRST(head) ((head)->lh_first) |
|
|
|
#define LIST_END(head) NULL |
|
|
|
#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head)) |
|
|
|
#define LIST_NEXT(elm, field) ((elm)->field.le_next) |
|
|
|
|
|
|
|
#define LIST_FOREACH(var, head, field) \ |
|
|
|
for((var) = LIST_FIRST(head); \ |
|
|
|
(var)!= LIST_END(head); \ |
|
|
|
(var) = LIST_NEXT(var, field)) |
|
|
|
|
|
|
|
#define LIST_FOREACH_SAFE(var, head, field, tvar) \ |
|
|
|
for ((var) = LIST_FIRST(head); \ |
|
|
|
(var) && ((tvar) = LIST_NEXT(var, field), 1); \ |
|
|
|
(var) = (tvar)) |
|
|
|
|
|
|
|
/* |
|
|
|
* List functions. |
|
|
|
*/ |
|
|
|
#define LIST_INIT(head) do { \ |
|
|
|
LIST_FIRST(head) = LIST_END(head); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define LIST_INSERT_AFTER(listelm, elm, field) do { \ |
|
|
|
if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \ |
|
|
|
(listelm)->field.le_next->field.le_prev = \ |
|
|
|
&(elm)->field.le_next; \ |
|
|
|
(listelm)->field.le_next = (elm); \ |
|
|
|
(elm)->field.le_prev = &(listelm)->field.le_next; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \ |
|
|
|
(elm)->field.le_prev = (listelm)->field.le_prev; \ |
|
|
|
(elm)->field.le_next = (listelm); \ |
|
|
|
*(listelm)->field.le_prev = (elm); \ |
|
|
|
(listelm)->field.le_prev = &(elm)->field.le_next; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define LIST_INSERT_HEAD(head, elm, field) do { \ |
|
|
|
if (((elm)->field.le_next = (head)->lh_first) != NULL) \ |
|
|
|
(head)->lh_first->field.le_prev = &(elm)->field.le_next;\ |
|
|
|
(head)->lh_first = (elm); \ |
|
|
|
(elm)->field.le_prev = &(head)->lh_first; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define LIST_REMOVE(elm, field) do { \ |
|
|
|
if ((elm)->field.le_next != NULL) \ |
|
|
|
(elm)->field.le_next->field.le_prev = \ |
|
|
|
(elm)->field.le_prev; \ |
|
|
|
*(elm)->field.le_prev = (elm)->field.le_next; \ |
|
|
|
_Q_INVALIDATE((elm)->field.le_prev); \ |
|
|
|
_Q_INVALIDATE((elm)->field.le_next); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define LIST_REPLACE(elm, elm2, field) do { \ |
|
|
|
if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \ |
|
|
|
(elm2)->field.le_next->field.le_prev = \ |
|
|
|
&(elm2)->field.le_next; \ |
|
|
|
(elm2)->field.le_prev = (elm)->field.le_prev; \ |
|
|
|
*(elm2)->field.le_prev = (elm2); \ |
|
|
|
_Q_INVALIDATE((elm)->field.le_prev); \ |
|
|
|
_Q_INVALIDATE((elm)->field.le_next); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
/* |
|
|
|
* Simple queue definitions. |
|
|
|
*/ |
|
|
|
#define SIMPLEQ_HEAD(name, type) \ |
|
|
|
struct name { \ |
|
|
|
struct type *sqh_first; /* first element */ \ |
|
|
|
struct type **sqh_last; /* addr of last next element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
#define SIMPLEQ_HEAD_INITIALIZER(head) \ |
|
|
|
{ NULL, &(head).sqh_first } |
|
|
|
|
|
|
|
#define SIMPLEQ_ENTRY(type) \ |
|
|
|
struct { \ |
|
|
|
struct type *sqe_next; /* next element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Simple queue access methods. |
|
|
|
*/ |
|
|
|
#define SIMPLEQ_FIRST(head) ((head)->sqh_first) |
|
|
|
#define SIMPLEQ_END(head) NULL |
|
|
|
#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head)) |
|
|
|
#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next) |
|
|
|
|
|
|
|
#define SIMPLEQ_FOREACH(var, head, field) \ |
|
|
|
for((var) = SIMPLEQ_FIRST(head); \ |
|
|
|
(var) != SIMPLEQ_END(head); \ |
|
|
|
(var) = SIMPLEQ_NEXT(var, field)) |
|
|
|
|
|
|
|
#define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \ |
|
|
|
for ((var) = SIMPLEQ_FIRST(head); \ |
|
|
|
(var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \ |
|
|
|
(var) = (tvar)) |
|
|
|
|
|
|
|
/* |
|
|
|
* Simple queue functions. |
|
|
|
*/ |
|
|
|
#define SIMPLEQ_INIT(head) do { \ |
|
|
|
(head)->sqh_first = NULL; \ |
|
|
|
(head)->sqh_last = &(head)->sqh_first; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \ |
|
|
|
if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \ |
|
|
|
(head)->sqh_last = &(elm)->field.sqe_next; \ |
|
|
|
(head)->sqh_first = (elm); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \ |
|
|
|
(elm)->field.sqe_next = NULL; \ |
|
|
|
*(head)->sqh_last = (elm); \ |
|
|
|
(head)->sqh_last = &(elm)->field.sqe_next; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
|
|
|
if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\ |
|
|
|
(head)->sqh_last = &(elm)->field.sqe_next; \ |
|
|
|
(listelm)->field.sqe_next = (elm); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define SIMPLEQ_REMOVE_HEAD(head, field) do { \ |
|
|
|
if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \ |
|
|
|
(head)->sqh_last = &(head)->sqh_first; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \ |
|
|
|
if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \ |
|
|
|
== NULL) \ |
|
|
|
(head)->sqh_last = &(elm)->field.sqe_next; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
/* |
|
|
|
* XOR Simple queue definitions. |
|
|
|
*/ |
|
|
|
#define XSIMPLEQ_HEAD(name, type) \ |
|
|
|
struct name { \ |
|
|
|
struct type *sqx_first; /* first element */ \ |
|
|
|
struct type **sqx_last; /* addr of last next element */ \ |
|
|
|
unsigned long sqx_cookie; \ |
|
|
|
} |
|
|
|
|
|
|
|
#define XSIMPLEQ_ENTRY(type) \ |
|
|
|
struct { \ |
|
|
|
struct type *sqx_next; /* next element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* XOR Simple queue access methods. |
|
|
|
*/ |
|
|
|
#define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \ |
|
|
|
(unsigned long)(ptr))) |
|
|
|
#define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first)) |
|
|
|
#define XSIMPLEQ_END(head) NULL |
|
|
|
#define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head)) |
|
|
|
#define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next)) |
|
|
|
|
|
|
|
|
|
|
|
#define XSIMPLEQ_FOREACH(var, head, field) \ |
|
|
|
for ((var) = XSIMPLEQ_FIRST(head); \ |
|
|
|
(var) != XSIMPLEQ_END(head); \ |
|
|
|
(var) = XSIMPLEQ_NEXT(head, var, field)) |
|
|
|
|
|
|
|
#define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \ |
|
|
|
for ((var) = XSIMPLEQ_FIRST(head); \ |
|
|
|
(var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \ |
|
|
|
(var) = (tvar)) |
|
|
|
|
|
|
|
/* |
|
|
|
* XOR Simple queue functions. |
|
|
|
*/ |
|
|
|
#define XSIMPLEQ_INIT(head) do { \ |
|
|
|
arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \ |
|
|
|
(head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \ |
|
|
|
(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \ |
|
|
|
if (((elm)->field.sqx_next = (head)->sqx_first) == \ |
|
|
|
XSIMPLEQ_XOR(head, NULL)) \ |
|
|
|
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ |
|
|
|
(head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \ |
|
|
|
(elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \ |
|
|
|
*(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \ |
|
|
|
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
|
|
|
if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \ |
|
|
|
XSIMPLEQ_XOR(head, NULL)) \ |
|
|
|
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ |
|
|
|
(listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define XSIMPLEQ_REMOVE_HEAD(head, field) do { \ |
|
|
|
if (((head)->sqx_first = XSIMPLEQ_XOR(head, \ |
|
|
|
(head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \ |
|
|
|
(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \ |
|
|
|
if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \ |
|
|
|
(elm)->field.sqx_next)->field.sqx_next) \ |
|
|
|
== XSIMPLEQ_XOR(head, NULL)) \ |
|
|
|
(head)->sqx_last = \ |
|
|
|
XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
|
|
* Tail queue definitions. |
|
|
|
*/ |
|
|
|
#define TAILQ_HEAD(name, type) \ |
|
|
|
struct name { \ |
|
|
|
struct type *tqh_first; /* first element */ \ |
|
|
|
struct type **tqh_last; /* addr of last next element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
#define TAILQ_HEAD_INITIALIZER(head) \ |
|
|
|
{ NULL, &(head).tqh_first } |
|
|
|
|
|
|
|
#define TAILQ_ENTRY(type) \ |
|
|
|
struct { \ |
|
|
|
struct type *tqe_next; /* next element */ \ |
|
|
|
struct type **tqe_prev; /* address of previous next element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* tail queue access methods |
|
|
|
*/ |
|
|
|
#define TAILQ_FIRST(head) ((head)->tqh_first) |
|
|
|
#define TAILQ_END(head) NULL |
|
|
|
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) |
|
|
|
#define TAILQ_LAST(head, headname) \ |
|
|
|
(*(((struct headname *)((head)->tqh_last))->tqh_last)) |
|
|
|
/* XXX */ |
|
|
|
#define TAILQ_PREV(elm, headname, field) \ |
|
|
|
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) |
|
|
|
#define TAILQ_EMPTY(head) \ |
|
|
|
(TAILQ_FIRST(head) == TAILQ_END(head)) |
|
|
|
|
|
|
|
#define TAILQ_FOREACH(var, head, field) \ |
|
|
|
for((var) = TAILQ_FIRST(head); \ |
|
|
|
(var) != TAILQ_END(head); \ |
|
|
|
(var) = TAILQ_NEXT(var, field)) |
|
|
|
|
|
|
|
#define TAILQ_FOREACH_SAFE(var, head, field, tvar) \ |
|
|
|
for ((var) = TAILQ_FIRST(head); \ |
|
|
|
(var) != TAILQ_END(head) && \ |
|
|
|
((tvar) = TAILQ_NEXT(var, field), 1); \ |
|
|
|
(var) = (tvar)) |
|
|
|
|
|
|
|
|
|
|
|
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ |
|
|
|
for((var) = TAILQ_LAST(head, headname); \ |
|
|
|
(var) != TAILQ_END(head); \ |
|
|
|
(var) = TAILQ_PREV(var, headname, field)) |
|
|
|
|
|
|
|
#define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \ |
|
|
|
for ((var) = TAILQ_LAST(head, headname); \ |
|
|
|
(var) != TAILQ_END(head) && \ |
|
|
|
((tvar) = TAILQ_PREV(var, headname, field), 1); \ |
|
|
|
(var) = (tvar)) |
|
|
|
|
|
|
|
/* |
|
|
|
* Tail queue functions. |
|
|
|
*/ |
|
|
|
#define TAILQ_INIT(head) do { \ |
|
|
|
(head)->tqh_first = NULL; \ |
|
|
|
(head)->tqh_last = &(head)->tqh_first; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define TAILQ_INSERT_HEAD(head, elm, field) do { \ |
|
|
|
if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \ |
|
|
|
(head)->tqh_first->field.tqe_prev = \ |
|
|
|
&(elm)->field.tqe_next; \ |
|
|
|
else \ |
|
|
|
(head)->tqh_last = &(elm)->field.tqe_next; \ |
|
|
|
(head)->tqh_first = (elm); \ |
|
|
|
(elm)->field.tqe_prev = &(head)->tqh_first; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define TAILQ_INSERT_TAIL(head, elm, field) do { \ |
|
|
|
(elm)->field.tqe_next = NULL; \ |
|
|
|
(elm)->field.tqe_prev = (head)->tqh_last; \ |
|
|
|
*(head)->tqh_last = (elm); \ |
|
|
|
(head)->tqh_last = &(elm)->field.tqe_next; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
|
|
|
if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\ |
|
|
|
(elm)->field.tqe_next->field.tqe_prev = \ |
|
|
|
&(elm)->field.tqe_next; \ |
|
|
|
else \ |
|
|
|
(head)->tqh_last = &(elm)->field.tqe_next; \ |
|
|
|
(listelm)->field.tqe_next = (elm); \ |
|
|
|
(elm)->field.tqe_prev = &(listelm)->field.tqe_next; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ |
|
|
|
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ |
|
|
|
(elm)->field.tqe_next = (listelm); \ |
|
|
|
*(listelm)->field.tqe_prev = (elm); \ |
|
|
|
(listelm)->field.tqe_prev = &(elm)->field.tqe_next; \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define TAILQ_REMOVE(head, elm, field) do { \ |
|
|
|
if (((elm)->field.tqe_next) != NULL) \ |
|
|
|
(elm)->field.tqe_next->field.tqe_prev = \ |
|
|
|
(elm)->field.tqe_prev; \ |
|
|
|
else \ |
|
|
|
(head)->tqh_last = (elm)->field.tqe_prev; \ |
|
|
|
*(elm)->field.tqe_prev = (elm)->field.tqe_next; \ |
|
|
|
_Q_INVALIDATE((elm)->field.tqe_prev); \ |
|
|
|
_Q_INVALIDATE((elm)->field.tqe_next); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define TAILQ_REPLACE(head, elm, elm2, field) do { \ |
|
|
|
if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \ |
|
|
|
(elm2)->field.tqe_next->field.tqe_prev = \ |
|
|
|
&(elm2)->field.tqe_next; \ |
|
|
|
else \ |
|
|
|
(head)->tqh_last = &(elm2)->field.tqe_next; \ |
|
|
|
(elm2)->field.tqe_prev = (elm)->field.tqe_prev; \ |
|
|
|
*(elm2)->field.tqe_prev = (elm2); \ |
|
|
|
_Q_INVALIDATE((elm)->field.tqe_prev); \ |
|
|
|
_Q_INVALIDATE((elm)->field.tqe_next); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
/* |
|
|
|
* Circular queue definitions. |
|
|
|
*/ |
|
|
|
#define CIRCLEQ_HEAD(name, type) \ |
|
|
|
struct name { \ |
|
|
|
struct type *cqh_first; /* first element */ \ |
|
|
|
struct type *cqh_last; /* last element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
#define CIRCLEQ_HEAD_INITIALIZER(head) \ |
|
|
|
{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) } |
|
|
|
|
|
|
|
#define CIRCLEQ_ENTRY(type) \ |
|
|
|
struct { \ |
|
|
|
struct type *cqe_next; /* next element */ \ |
|
|
|
struct type *cqe_prev; /* previous element */ \ |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Circular queue access methods |
|
|
|
*/ |
|
|
|
#define CIRCLEQ_FIRST(head) ((head)->cqh_first) |
|
|
|
#define CIRCLEQ_LAST(head) ((head)->cqh_last) |
|
|
|
#define CIRCLEQ_END(head) ((void *)(head)) |
|
|
|
#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next) |
|
|
|
#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev) |
|
|
|
#define CIRCLEQ_EMPTY(head) \ |
|
|
|
(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head)) |
|
|
|
|
|
|
|
#define CIRCLEQ_FOREACH(var, head, field) \ |
|
|
|
for((var) = CIRCLEQ_FIRST(head); \ |
|
|
|
(var) != CIRCLEQ_END(head); \ |
|
|
|
(var) = CIRCLEQ_NEXT(var, field)) |
|
|
|
|
|
|
|
#define CIRCLEQ_FOREACH_SAFE(var, head, field, tvar) \ |
|
|
|
for ((var) = CIRCLEQ_FIRST(head); \ |
|
|
|
(var) != CIRCLEQ_END(head) && \ |
|
|
|
((tvar) = CIRCLEQ_NEXT(var, field), 1); \ |
|
|
|
(var) = (tvar)) |
|
|
|
|
|
|
|
#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \ |
|
|
|
for((var) = CIRCLEQ_LAST(head); \ |
|
|
|
(var) != CIRCLEQ_END(head); \ |
|
|
|
(var) = CIRCLEQ_PREV(var, field)) |
|
|
|
|
|
|
|
#define CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \ |
|
|
|
for ((var) = CIRCLEQ_LAST(head, headname); \ |
|
|
|
(var) != CIRCLEQ_END(head) && \ |
|
|
|
((tvar) = CIRCLEQ_PREV(var, headname, field), 1); \ |
|
|
|
(var) = (tvar)) |
|
|
|
|
|
|
|
/* |
|
|
|
* Circular queue functions. |
|
|
|
*/ |
|
|
|
#define CIRCLEQ_INIT(head) do { \ |
|
|
|
(head)->cqh_first = CIRCLEQ_END(head); \ |
|
|
|
(head)->cqh_last = CIRCLEQ_END(head); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
|
|
|
(elm)->field.cqe_next = (listelm)->field.cqe_next; \ |
|
|
|
(elm)->field.cqe_prev = (listelm); \ |
|
|
|
if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \ |
|
|
|
(head)->cqh_last = (elm); \ |
|
|
|
else \ |
|
|
|
(listelm)->field.cqe_next->field.cqe_prev = (elm); \ |
|
|
|
(listelm)->field.cqe_next = (elm); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \ |
|
|
|
(elm)->field.cqe_next = (listelm); \ |
|
|
|
(elm)->field.cqe_prev = (listelm)->field.cqe_prev; \ |
|
|
|
if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \ |
|
|
|
(head)->cqh_first = (elm); \ |
|
|
|
else \ |
|
|
|
(listelm)->field.cqe_prev->field.cqe_next = (elm); \ |
|
|
|
(listelm)->field.cqe_prev = (elm); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \ |
|
|
|
(elm)->field.cqe_next = (head)->cqh_first; \ |
|
|
|
(elm)->field.cqe_prev = CIRCLEQ_END(head); \ |
|
|
|
if ((head)->cqh_last == CIRCLEQ_END(head)) \ |
|
|
|
(head)->cqh_last = (elm); \ |
|
|
|
else \ |
|
|
|
(head)->cqh_first->field.cqe_prev = (elm); \ |
|
|
|
(head)->cqh_first = (elm); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \ |
|
|
|
(elm)->field.cqe_next = CIRCLEQ_END(head); \ |
|
|
|
(elm)->field.cqe_prev = (head)->cqh_last; \ |
|
|
|
if ((head)->cqh_first == CIRCLEQ_END(head)) \ |
|
|
|
(head)->cqh_first = (elm); \ |
|
|
|
else \ |
|
|
|
(head)->cqh_last->field.cqe_next = (elm); \ |
|
|
|
(head)->cqh_last = (elm); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define CIRCLEQ_REMOVE(head, elm, field) do { \ |
|
|
|
if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \ |
|
|
|
(head)->cqh_last = (elm)->field.cqe_prev; \ |
|
|
|
else \ |
|
|
|
(elm)->field.cqe_next->field.cqe_prev = \ |
|
|
|
(elm)->field.cqe_prev; \ |
|
|
|
if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \ |
|
|
|
(head)->cqh_first = (elm)->field.cqe_next; \ |
|
|
|
else \ |
|
|
|
(elm)->field.cqe_prev->field.cqe_next = \ |
|
|
|
(elm)->field.cqe_next; \ |
|
|
|
_Q_INVALIDATE((elm)->field.cqe_prev); \ |
|
|
|
_Q_INVALIDATE((elm)->field.cqe_next); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \ |
|
|
|
if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \ |
|
|
|
CIRCLEQ_END(head)) \ |
|
|
|
(head)->cqh_last = (elm2); \ |
|
|
|
else \ |
|
|
|
(elm2)->field.cqe_next->field.cqe_prev = (elm2); \ |
|
|
|
if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \ |
|
|
|
CIRCLEQ_END(head)) \ |
|
|
|
(head)->cqh_first = (elm2); \ |
|
|
|
else \ |
|
|
|
(elm2)->field.cqe_prev->field.cqe_next = (elm2); \ |
|
|
|
_Q_INVALIDATE((elm)->field.cqe_prev); \ |
|
|
|
_Q_INVALIDATE((elm)->field.cqe_next); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#endif /* !_SYS_QUEUE_H_ */ |