My build of nnn with minor changes
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

queue.h 22 KiB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648
  1. /* $OpenBSD: src/sys/sys/queue.h,v 1.38 2013/07/03 15:05:21 fgsch Exp $ */
  2. /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
  3. /*
  4. * Copyright (c) 1991, 1993
  5. * The Regents of the University of California. All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. Neither the name of the University nor the names of its contributors
  16. * may be used to endorse or promote products derived from this software
  17. * without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  21. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  22. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  23. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  24. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  25. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  26. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  27. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  28. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  29. * SUCH DAMAGE.
  30. *
  31. * @(#)queue.h 8.5 (Berkeley) 8/20/94
  32. */
  33. #ifndef _SYS_QUEUE_H_
  34. #define _SYS_QUEUE_H_
  35. /*
  36. * This file defines five types of data structures: singly-linked lists,
  37. * lists, simple queues, tail queues, and circular queues.
  38. *
  39. *
  40. * A singly-linked list is headed by a single forward pointer. The elements
  41. * are singly linked for minimum space and pointer manipulation overhead at
  42. * the expense of O(n) removal for arbitrary elements. New elements can be
  43. * added to the list after an existing element or at the head of the list.
  44. * Elements being removed from the head of the list should use the explicit
  45. * macro for this purpose for optimum efficiency. A singly-linked list may
  46. * only be traversed in the forward direction. Singly-linked lists are ideal
  47. * for applications with large datasets and few or no removals or for
  48. * implementing a LIFO queue.
  49. *
  50. * A list is headed by a single forward pointer (or an array of forward
  51. * pointers for a hash table header). The elements are doubly linked
  52. * so that an arbitrary element can be removed without a need to
  53. * traverse the list. New elements can be added to the list before
  54. * or after an existing element or at the head of the list. A list
  55. * may only be traversed in the forward direction.
  56. *
  57. * A simple queue is headed by a pair of pointers, one the head of the
  58. * list and the other to the tail of the list. The elements are singly
  59. * linked to save space, so elements can only be removed from the
  60. * head of the list. New elements can be added to the list before or after
  61. * an existing element, at the head of the list, or at the end of the
  62. * list. A simple queue may only be traversed in the forward direction.
  63. *
  64. * A tail queue is headed by a pair of pointers, one to the head of the
  65. * list and the other to the tail of the list. The elements are doubly
  66. * linked so that an arbitrary element can be removed without a need to
  67. * traverse the list. New elements can be added to the list before or
  68. * after an existing element, at the head of the list, or at the end of
  69. * the list. A tail queue may be traversed in either direction.
  70. *
  71. * A circle queue is headed by a pair of pointers, one to the head of the
  72. * list and the other to the tail of the list. The elements are doubly
  73. * linked so that an arbitrary element can be removed without a need to
  74. * traverse the list. New elements can be added to the list before or after
  75. * an existing element, at the head of the list, or at the end of the list.
  76. * A circle queue may be traversed in either direction, but has a more
  77. * complex end of list detection.
  78. *
  79. * For details on the use of these macros, see the queue(3) manual page.
  80. */
  81. #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
  82. #define _Q_INVALIDATE(a) (a) = ((void *)-1)
  83. #else
  84. #define _Q_INVALIDATE(a)
  85. #endif
  86. /*
  87. * Singly-linked List definitions.
  88. */
  89. #define SLIST_HEAD(name, type) \
  90. struct name { \
  91. struct type *slh_first; /* first element */ \
  92. }
  93. #define SLIST_HEAD_INITIALIZER(head) \
  94. { NULL }
  95. #define SLIST_ENTRY(type) \
  96. struct { \
  97. struct type *sle_next; /* next element */ \
  98. }
  99. /*
  100. * Singly-linked List access methods.
  101. */
  102. #define SLIST_FIRST(head) ((head)->slh_first)
  103. #define SLIST_END(head) NULL
  104. #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
  105. #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
  106. #define SLIST_FOREACH(var, head, field) \
  107. for((var) = SLIST_FIRST(head); \
  108. (var) != SLIST_END(head); \
  109. (var) = SLIST_NEXT(var, field))
  110. #define SLIST_FOREACH_SAFE(var, head, field, tvar) \
  111. for ((var) = SLIST_FIRST(head); \
  112. (var) && ((tvar) = SLIST_NEXT(var, field), 1); \
  113. (var) = (tvar))
  114. /*
  115. * Singly-linked List functions.
  116. */
  117. #define SLIST_INIT(head) { \
  118. SLIST_FIRST(head) = SLIST_END(head); \
  119. }
  120. #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
  121. (elm)->field.sle_next = (slistelm)->field.sle_next; \
  122. (slistelm)->field.sle_next = (elm); \
  123. } while (0)
  124. #define SLIST_INSERT_HEAD(head, elm, field) do { \
  125. (elm)->field.sle_next = (head)->slh_first; \
  126. (head)->slh_first = (elm); \
  127. } while (0)
  128. #define SLIST_REMOVE_AFTER(elm, field) do { \
  129. (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
  130. } while (0)
  131. #define SLIST_REMOVE_HEAD(head, field) do { \
  132. (head)->slh_first = (head)->slh_first->field.sle_next; \
  133. } while (0)
  134. #define SLIST_REMOVE(head, elm, type, field) do { \
  135. if ((head)->slh_first == (elm)) { \
  136. SLIST_REMOVE_HEAD((head), field); \
  137. } else { \
  138. struct type *curelm = (head)->slh_first; \
  139. \
  140. while (curelm->field.sle_next != (elm)) \
  141. curelm = curelm->field.sle_next; \
  142. curelm->field.sle_next = \
  143. curelm->field.sle_next->field.sle_next; \
  144. _Q_INVALIDATE((elm)->field.sle_next); \
  145. } \
  146. } while (0)
  147. /*
  148. * List definitions.
  149. */
  150. #define LIST_HEAD(name, type) \
  151. struct name { \
  152. struct type *lh_first; /* first element */ \
  153. }
  154. #define LIST_HEAD_INITIALIZER(head) \
  155. { NULL }
  156. #define LIST_ENTRY(type) \
  157. struct { \
  158. struct type *le_next; /* next element */ \
  159. struct type **le_prev; /* address of previous next element */ \
  160. }
  161. /*
  162. * List access methods
  163. */
  164. #define LIST_FIRST(head) ((head)->lh_first)
  165. #define LIST_END(head) NULL
  166. #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
  167. #define LIST_NEXT(elm, field) ((elm)->field.le_next)
  168. #define LIST_FOREACH(var, head, field) \
  169. for((var) = LIST_FIRST(head); \
  170. (var)!= LIST_END(head); \
  171. (var) = LIST_NEXT(var, field))
  172. #define LIST_FOREACH_SAFE(var, head, field, tvar) \
  173. for ((var) = LIST_FIRST(head); \
  174. (var) && ((tvar) = LIST_NEXT(var, field), 1); \
  175. (var) = (tvar))
  176. /*
  177. * List functions.
  178. */
  179. #define LIST_INIT(head) do { \
  180. LIST_FIRST(head) = LIST_END(head); \
  181. } while (0)
  182. #define LIST_INSERT_AFTER(listelm, elm, field) do { \
  183. if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
  184. (listelm)->field.le_next->field.le_prev = \
  185. &(elm)->field.le_next; \
  186. (listelm)->field.le_next = (elm); \
  187. (elm)->field.le_prev = &(listelm)->field.le_next; \
  188. } while (0)
  189. #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
  190. (elm)->field.le_prev = (listelm)->field.le_prev; \
  191. (elm)->field.le_next = (listelm); \
  192. *(listelm)->field.le_prev = (elm); \
  193. (listelm)->field.le_prev = &(elm)->field.le_next; \
  194. } while (0)
  195. #define LIST_INSERT_HEAD(head, elm, field) do { \
  196. if (((elm)->field.le_next = (head)->lh_first) != NULL) \
  197. (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
  198. (head)->lh_first = (elm); \
  199. (elm)->field.le_prev = &(head)->lh_first; \
  200. } while (0)
  201. #define LIST_REMOVE(elm, field) do { \
  202. if ((elm)->field.le_next != NULL) \
  203. (elm)->field.le_next->field.le_prev = \
  204. (elm)->field.le_prev; \
  205. *(elm)->field.le_prev = (elm)->field.le_next; \
  206. _Q_INVALIDATE((elm)->field.le_prev); \
  207. _Q_INVALIDATE((elm)->field.le_next); \
  208. } while (0)
  209. #define LIST_REPLACE(elm, elm2, field) do { \
  210. if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
  211. (elm2)->field.le_next->field.le_prev = \
  212. &(elm2)->field.le_next; \
  213. (elm2)->field.le_prev = (elm)->field.le_prev; \
  214. *(elm2)->field.le_prev = (elm2); \
  215. _Q_INVALIDATE((elm)->field.le_prev); \
  216. _Q_INVALIDATE((elm)->field.le_next); \
  217. } while (0)
  218. /*
  219. * Simple queue definitions.
  220. */
  221. #define SIMPLEQ_HEAD(name, type) \
  222. struct name { \
  223. struct type *sqh_first; /* first element */ \
  224. struct type **sqh_last; /* addr of last next element */ \
  225. }
  226. #define SIMPLEQ_HEAD_INITIALIZER(head) \
  227. { NULL, &(head).sqh_first }
  228. #define SIMPLEQ_ENTRY(type) \
  229. struct { \
  230. struct type *sqe_next; /* next element */ \
  231. }
  232. /*
  233. * Simple queue access methods.
  234. */
  235. #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
  236. #define SIMPLEQ_END(head) NULL
  237. #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
  238. #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
  239. #define SIMPLEQ_FOREACH(var, head, field) \
  240. for((var) = SIMPLEQ_FIRST(head); \
  241. (var) != SIMPLEQ_END(head); \
  242. (var) = SIMPLEQ_NEXT(var, field))
  243. #define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
  244. for ((var) = SIMPLEQ_FIRST(head); \
  245. (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \
  246. (var) = (tvar))
  247. /*
  248. * Simple queue functions.
  249. */
  250. #define SIMPLEQ_INIT(head) do { \
  251. (head)->sqh_first = NULL; \
  252. (head)->sqh_last = &(head)->sqh_first; \
  253. } while (0)
  254. #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
  255. if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
  256. (head)->sqh_last = &(elm)->field.sqe_next; \
  257. (head)->sqh_first = (elm); \
  258. } while (0)
  259. #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
  260. (elm)->field.sqe_next = NULL; \
  261. *(head)->sqh_last = (elm); \
  262. (head)->sqh_last = &(elm)->field.sqe_next; \
  263. } while (0)
  264. #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  265. if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
  266. (head)->sqh_last = &(elm)->field.sqe_next; \
  267. (listelm)->field.sqe_next = (elm); \
  268. } while (0)
  269. #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
  270. if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
  271. (head)->sqh_last = &(head)->sqh_first; \
  272. } while (0)
  273. #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
  274. if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
  275. == NULL) \
  276. (head)->sqh_last = &(elm)->field.sqe_next; \
  277. } while (0)
  278. /*
  279. * XOR Simple queue definitions.
  280. */
  281. #define XSIMPLEQ_HEAD(name, type) \
  282. struct name { \
  283. struct type *sqx_first; /* first element */ \
  284. struct type **sqx_last; /* addr of last next element */ \
  285. unsigned long sqx_cookie; \
  286. }
  287. #define XSIMPLEQ_ENTRY(type) \
  288. struct { \
  289. struct type *sqx_next; /* next element */ \
  290. }
  291. /*
  292. * XOR Simple queue access methods.
  293. */
  294. #define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \
  295. (unsigned long)(ptr)))
  296. #define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
  297. #define XSIMPLEQ_END(head) NULL
  298. #define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
  299. #define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
  300. #define XSIMPLEQ_FOREACH(var, head, field) \
  301. for ((var) = XSIMPLEQ_FIRST(head); \
  302. (var) != XSIMPLEQ_END(head); \
  303. (var) = XSIMPLEQ_NEXT(head, var, field))
  304. #define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
  305. for ((var) = XSIMPLEQ_FIRST(head); \
  306. (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \
  307. (var) = (tvar))
  308. /*
  309. * XOR Simple queue functions.
  310. */
  311. #define XSIMPLEQ_INIT(head) do { \
  312. arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
  313. (head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \
  314. (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
  315. } while (0)
  316. #define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \
  317. if (((elm)->field.sqx_next = (head)->sqx_first) == \
  318. XSIMPLEQ_XOR(head, NULL)) \
  319. (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
  320. (head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \
  321. } while (0)
  322. #define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \
  323. (elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \
  324. *(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
  325. (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
  326. } while (0)
  327. #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  328. if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \
  329. XSIMPLEQ_XOR(head, NULL)) \
  330. (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
  331. (listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \
  332. } while (0)
  333. #define XSIMPLEQ_REMOVE_HEAD(head, field) do { \
  334. if (((head)->sqx_first = XSIMPLEQ_XOR(head, \
  335. (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
  336. (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
  337. } while (0)
  338. #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
  339. if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \
  340. (elm)->field.sqx_next)->field.sqx_next) \
  341. == XSIMPLEQ_XOR(head, NULL)) \
  342. (head)->sqx_last = \
  343. XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
  344. } while (0)
  345. /*
  346. * Tail queue definitions.
  347. */
  348. #define TAILQ_HEAD(name, type) \
  349. struct name { \
  350. struct type *tqh_first; /* first element */ \
  351. struct type **tqh_last; /* addr of last next element */ \
  352. }
  353. #define TAILQ_HEAD_INITIALIZER(head) \
  354. { NULL, &(head).tqh_first }
  355. #define TAILQ_ENTRY(type) \
  356. struct { \
  357. struct type *tqe_next; /* next element */ \
  358. struct type **tqe_prev; /* address of previous next element */ \
  359. }
  360. /*
  361. * tail queue access methods
  362. */
  363. #define TAILQ_FIRST(head) ((head)->tqh_first)
  364. #define TAILQ_END(head) NULL
  365. #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
  366. #define TAILQ_LAST(head, headname) \
  367. (*(((struct headname *)((head)->tqh_last))->tqh_last))
  368. /* XXX */
  369. #define TAILQ_PREV(elm, headname, field) \
  370. (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  371. #define TAILQ_EMPTY(head) \
  372. (TAILQ_FIRST(head) == TAILQ_END(head))
  373. #define TAILQ_FOREACH(var, head, field) \
  374. for((var) = TAILQ_FIRST(head); \
  375. (var) != TAILQ_END(head); \
  376. (var) = TAILQ_NEXT(var, field))
  377. #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
  378. for ((var) = TAILQ_FIRST(head); \
  379. (var) != TAILQ_END(head) && \
  380. ((tvar) = TAILQ_NEXT(var, field), 1); \
  381. (var) = (tvar))
  382. #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
  383. for((var) = TAILQ_LAST(head, headname); \
  384. (var) != TAILQ_END(head); \
  385. (var) = TAILQ_PREV(var, headname, field))
  386. #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
  387. for ((var) = TAILQ_LAST(head, headname); \
  388. (var) != TAILQ_END(head) && \
  389. ((tvar) = TAILQ_PREV(var, headname, field), 1); \
  390. (var) = (tvar))
  391. /*
  392. * Tail queue functions.
  393. */
  394. #define TAILQ_INIT(head) do { \
  395. (head)->tqh_first = NULL; \
  396. (head)->tqh_last = &(head)->tqh_first; \
  397. } while (0)
  398. #define TAILQ_INSERT_HEAD(head, elm, field) do { \
  399. if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
  400. (head)->tqh_first->field.tqe_prev = \
  401. &(elm)->field.tqe_next; \
  402. else \
  403. (head)->tqh_last = &(elm)->field.tqe_next; \
  404. (head)->tqh_first = (elm); \
  405. (elm)->field.tqe_prev = &(head)->tqh_first; \
  406. } while (0)
  407. #define TAILQ_INSERT_TAIL(head, elm, field) do { \
  408. (elm)->field.tqe_next = NULL; \
  409. (elm)->field.tqe_prev = (head)->tqh_last; \
  410. *(head)->tqh_last = (elm); \
  411. (head)->tqh_last = &(elm)->field.tqe_next; \
  412. } while (0)
  413. #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
  414. if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
  415. (elm)->field.tqe_next->field.tqe_prev = \
  416. &(elm)->field.tqe_next; \
  417. else \
  418. (head)->tqh_last = &(elm)->field.tqe_next; \
  419. (listelm)->field.tqe_next = (elm); \
  420. (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
  421. } while (0)
  422. #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
  423. (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
  424. (elm)->field.tqe_next = (listelm); \
  425. *(listelm)->field.tqe_prev = (elm); \
  426. (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
  427. } while (0)
  428. #define TAILQ_REMOVE(head, elm, field) do { \
  429. if (((elm)->field.tqe_next) != NULL) \
  430. (elm)->field.tqe_next->field.tqe_prev = \
  431. (elm)->field.tqe_prev; \
  432. else \
  433. (head)->tqh_last = (elm)->field.tqe_prev; \
  434. *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
  435. _Q_INVALIDATE((elm)->field.tqe_prev); \
  436. _Q_INVALIDATE((elm)->field.tqe_next); \
  437. } while (0)
  438. #define TAILQ_REPLACE(head, elm, elm2, field) do { \
  439. if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
  440. (elm2)->field.tqe_next->field.tqe_prev = \
  441. &(elm2)->field.tqe_next; \
  442. else \
  443. (head)->tqh_last = &(elm2)->field.tqe_next; \
  444. (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
  445. *(elm2)->field.tqe_prev = (elm2); \
  446. _Q_INVALIDATE((elm)->field.tqe_prev); \
  447. _Q_INVALIDATE((elm)->field.tqe_next); \
  448. } while (0)
  449. /*
  450. * Circular queue definitions.
  451. */
  452. #define CIRCLEQ_HEAD(name, type) \
  453. struct name { \
  454. struct type *cqh_first; /* first element */ \
  455. struct type *cqh_last; /* last element */ \
  456. }
  457. #define CIRCLEQ_HEAD_INITIALIZER(head) \
  458. { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
  459. #define CIRCLEQ_ENTRY(type) \
  460. struct { \
  461. struct type *cqe_next; /* next element */ \
  462. struct type *cqe_prev; /* previous element */ \
  463. }
  464. /*
  465. * Circular queue access methods
  466. */
  467. #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
  468. #define CIRCLEQ_LAST(head) ((head)->cqh_last)
  469. #define CIRCLEQ_END(head) ((void *)(head))
  470. #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
  471. #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
  472. #define CIRCLEQ_EMPTY(head) \
  473. (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
  474. #define CIRCLEQ_FOREACH(var, head, field) \
  475. for((var) = CIRCLEQ_FIRST(head); \
  476. (var) != CIRCLEQ_END(head); \
  477. (var) = CIRCLEQ_NEXT(var, field))
  478. #define CIRCLEQ_FOREACH_SAFE(var, head, field, tvar) \
  479. for ((var) = CIRCLEQ_FIRST(head); \
  480. (var) != CIRCLEQ_END(head) && \
  481. ((tvar) = CIRCLEQ_NEXT(var, field), 1); \
  482. (var) = (tvar))
  483. #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
  484. for((var) = CIRCLEQ_LAST(head); \
  485. (var) != CIRCLEQ_END(head); \
  486. (var) = CIRCLEQ_PREV(var, field))
  487. #define CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
  488. for ((var) = CIRCLEQ_LAST(head, headname); \
  489. (var) != CIRCLEQ_END(head) && \
  490. ((tvar) = CIRCLEQ_PREV(var, headname, field), 1); \
  491. (var) = (tvar))
  492. /*
  493. * Circular queue functions.
  494. */
  495. #define CIRCLEQ_INIT(head) do { \
  496. (head)->cqh_first = CIRCLEQ_END(head); \
  497. (head)->cqh_last = CIRCLEQ_END(head); \
  498. } while (0)
  499. #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  500. (elm)->field.cqe_next = (listelm)->field.cqe_next; \
  501. (elm)->field.cqe_prev = (listelm); \
  502. if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
  503. (head)->cqh_last = (elm); \
  504. else \
  505. (listelm)->field.cqe_next->field.cqe_prev = (elm); \
  506. (listelm)->field.cqe_next = (elm); \
  507. } while (0)
  508. #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
  509. (elm)->field.cqe_next = (listelm); \
  510. (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
  511. if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
  512. (head)->cqh_first = (elm); \
  513. else \
  514. (listelm)->field.cqe_prev->field.cqe_next = (elm); \
  515. (listelm)->field.cqe_prev = (elm); \
  516. } while (0)
  517. #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
  518. (elm)->field.cqe_next = (head)->cqh_first; \
  519. (elm)->field.cqe_prev = CIRCLEQ_END(head); \
  520. if ((head)->cqh_last == CIRCLEQ_END(head)) \
  521. (head)->cqh_last = (elm); \
  522. else \
  523. (head)->cqh_first->field.cqe_prev = (elm); \
  524. (head)->cqh_first = (elm); \
  525. } while (0)
  526. #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
  527. (elm)->field.cqe_next = CIRCLEQ_END(head); \
  528. (elm)->field.cqe_prev = (head)->cqh_last; \
  529. if ((head)->cqh_first == CIRCLEQ_END(head)) \
  530. (head)->cqh_first = (elm); \
  531. else \
  532. (head)->cqh_last->field.cqe_next = (elm); \
  533. (head)->cqh_last = (elm); \
  534. } while (0)
  535. #define CIRCLEQ_REMOVE(head, elm, field) do { \
  536. if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
  537. (head)->cqh_last = (elm)->field.cqe_prev; \
  538. else \
  539. (elm)->field.cqe_next->field.cqe_prev = \
  540. (elm)->field.cqe_prev; \
  541. if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
  542. (head)->cqh_first = (elm)->field.cqe_next; \
  543. else \
  544. (elm)->field.cqe_prev->field.cqe_next = \
  545. (elm)->field.cqe_next; \
  546. _Q_INVALIDATE((elm)->field.cqe_prev); \
  547. _Q_INVALIDATE((elm)->field.cqe_next); \
  548. } while (0)
  549. #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
  550. if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
  551. CIRCLEQ_END(head)) \
  552. (head)->cqh_last = (elm2); \
  553. else \
  554. (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
  555. if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
  556. CIRCLEQ_END(head)) \
  557. (head)->cqh_first = (elm2); \
  558. else \
  559. (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
  560. _Q_INVALIDATE((elm)->field.cqe_prev); \
  561. _Q_INVALIDATE((elm)->field.cqe_next); \
  562. } while (0)
  563. #endif /* !_SYS_QUEUE_H_ */