A clone of btpd with my configuration changes.
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

678 lignes
22 KiB

  1. /* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
  2. /*
  3. * Copyright 2002 Niels Provos <provos@citi.umich.edu>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions
  8. * are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  16. * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  17. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  18. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  19. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  20. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  24. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #ifndef _SYS_TREE_H_
  27. #define _SYS_TREE_H_
  28. /*
  29. * This file defines data structures for different types of trees:
  30. * splay trees and red-black trees.
  31. *
  32. * A splay tree is a self-organizing data structure. Every operation
  33. * on the tree causes a splay to happen. The splay moves the requested
  34. * node to the root of the tree and partly rebalances it.
  35. *
  36. * This has the benefit that request locality causes faster lookups as
  37. * the requested nodes move to the top of the tree. On the other hand,
  38. * every lookup causes memory writes.
  39. *
  40. * The Balance Theorem bounds the total access time for m operations
  41. * and n inserts on an initially empty tree as O((m + n)lg n). The
  42. * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
  43. *
  44. * A red-black tree is a binary search tree with the node color as an
  45. * extra attribute. It fulfills a set of conditions:
  46. * - every search path from the root to a leaf consists of the
  47. * same number of black nodes,
  48. * - each red node (except for the root) has a black parent,
  49. * - each leaf node is black.
  50. *
  51. * Every operation on a red-black tree is bounded as O(lg n).
  52. * The maximum height of a red-black tree is 2lg (n+1).
  53. */
  54. #define SPLAY_HEAD(name, type) \
  55. struct name { \
  56. struct type *sph_root; /* root of the tree */ \
  57. }
  58. #define SPLAY_INITIALIZER(root) \
  59. { NULL }
  60. #define SPLAY_INIT(root) do { \
  61. (root)->sph_root = NULL; \
  62. } while (0)
  63. #define SPLAY_ENTRY(type) \
  64. struct { \
  65. struct type *spe_left; /* left element */ \
  66. struct type *spe_right; /* right element */ \
  67. }
  68. #define SPLAY_LEFT(elm, field) (elm)->field.spe_left
  69. #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
  70. #define SPLAY_ROOT(head) (head)->sph_root
  71. #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
  72. /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
  73. #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
  74. SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
  75. SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
  76. (head)->sph_root = tmp; \
  77. } while (0)
  78. #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
  79. SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
  80. SPLAY_LEFT(tmp, field) = (head)->sph_root; \
  81. (head)->sph_root = tmp; \
  82. } while (0)
  83. #define SPLAY_LINKLEFT(head, tmp, field) do { \
  84. SPLAY_LEFT(tmp, field) = (head)->sph_root; \
  85. tmp = (head)->sph_root; \
  86. (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
  87. } while (0)
  88. #define SPLAY_LINKRIGHT(head, tmp, field) do { \
  89. SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
  90. tmp = (head)->sph_root; \
  91. (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
  92. } while (0)
  93. #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
  94. SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
  95. SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
  96. SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
  97. SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
  98. } while (0)
  99. /* Generates prototypes and inline functions */
  100. #define SPLAY_PROTOTYPE(name, type, field, cmp) \
  101. void name##_SPLAY(struct name *, struct type *); \
  102. void name##_SPLAY_MINMAX(struct name *, int); \
  103. struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
  104. struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
  105. \
  106. /* Finds the node with the same key as elm */ \
  107. static __inline struct type * \
  108. name##_SPLAY_FIND(struct name *head, struct type *elm) \
  109. { \
  110. if (SPLAY_EMPTY(head)) \
  111. return(NULL); \
  112. name##_SPLAY(head, elm); \
  113. if ((cmp)(elm, (head)->sph_root) == 0) \
  114. return (head->sph_root); \
  115. return (NULL); \
  116. } \
  117. \
  118. static __inline struct type * \
  119. name##_SPLAY_NEXT(struct name *head, struct type *elm) \
  120. { \
  121. name##_SPLAY(head, elm); \
  122. if (SPLAY_RIGHT(elm, field) != NULL) { \
  123. elm = SPLAY_RIGHT(elm, field); \
  124. while (SPLAY_LEFT(elm, field) != NULL) { \
  125. elm = SPLAY_LEFT(elm, field); \
  126. } \
  127. } else \
  128. elm = NULL; \
  129. return (elm); \
  130. } \
  131. \
  132. static __inline struct type * \
  133. name##_SPLAY_MIN_MAX(struct name *head, int val) \
  134. { \
  135. name##_SPLAY_MINMAX(head, val); \
  136. return (SPLAY_ROOT(head)); \
  137. }
  138. /* Main splay operation.
  139. * Moves node close to the key of elm to top
  140. */
  141. #define SPLAY_GENERATE(name, type, field, cmp) \
  142. struct type * \
  143. name##_SPLAY_INSERT(struct name *head, struct type *elm) \
  144. { \
  145. if (SPLAY_EMPTY(head)) { \
  146. SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
  147. } else { \
  148. int __comp; \
  149. name##_SPLAY(head, elm); \
  150. __comp = (cmp)(elm, (head)->sph_root); \
  151. if(__comp < 0) { \
  152. SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
  153. SPLAY_RIGHT(elm, field) = (head)->sph_root; \
  154. SPLAY_LEFT((head)->sph_root, field) = NULL; \
  155. } else if (__comp > 0) { \
  156. SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
  157. SPLAY_LEFT(elm, field) = (head)->sph_root; \
  158. SPLAY_RIGHT((head)->sph_root, field) = NULL; \
  159. } else \
  160. return ((head)->sph_root); \
  161. } \
  162. (head)->sph_root = (elm); \
  163. return (NULL); \
  164. } \
  165. \
  166. struct type * \
  167. name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
  168. { \
  169. struct type *__tmp; \
  170. if (SPLAY_EMPTY(head)) \
  171. return (NULL); \
  172. name##_SPLAY(head, elm); \
  173. if ((cmp)(elm, (head)->sph_root) == 0) { \
  174. if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
  175. (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
  176. } else { \
  177. __tmp = SPLAY_RIGHT((head)->sph_root, field); \
  178. (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
  179. name##_SPLAY(head, elm); \
  180. SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
  181. } \
  182. return (elm); \
  183. } \
  184. return (NULL); \
  185. } \
  186. \
  187. void \
  188. name##_SPLAY(struct name *head, struct type *elm) \
  189. { \
  190. struct type __node, *__left, *__right, *__tmp; \
  191. int __comp; \
  192. \
  193. SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
  194. __left = __right = &__node; \
  195. \
  196. while ((__comp = (cmp)(elm, (head)->sph_root))) { \
  197. if (__comp < 0) { \
  198. __tmp = SPLAY_LEFT((head)->sph_root, field); \
  199. if (__tmp == NULL) \
  200. break; \
  201. if ((cmp)(elm, __tmp) < 0){ \
  202. SPLAY_ROTATE_RIGHT(head, __tmp, field); \
  203. if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
  204. break; \
  205. } \
  206. SPLAY_LINKLEFT(head, __right, field); \
  207. } else if (__comp > 0) { \
  208. __tmp = SPLAY_RIGHT((head)->sph_root, field); \
  209. if (__tmp == NULL) \
  210. break; \
  211. if ((cmp)(elm, __tmp) > 0){ \
  212. SPLAY_ROTATE_LEFT(head, __tmp, field); \
  213. if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
  214. break; \
  215. } \
  216. SPLAY_LINKRIGHT(head, __left, field); \
  217. } \
  218. } \
  219. SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
  220. } \
  221. \
  222. /* Splay with either the minimum or the maximum element \
  223. * Used to find minimum or maximum element in tree. \
  224. */ \
  225. void name##_SPLAY_MINMAX(struct name *head, int __comp) \
  226. { \
  227. struct type __node, *__left, *__right, *__tmp; \
  228. \
  229. SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
  230. __left = __right = &__node; \
  231. \
  232. while (1) { \
  233. if (__comp < 0) { \
  234. __tmp = SPLAY_LEFT((head)->sph_root, field); \
  235. if (__tmp == NULL) \
  236. break; \
  237. if (__comp < 0){ \
  238. SPLAY_ROTATE_RIGHT(head, __tmp, field); \
  239. if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
  240. break; \
  241. } \
  242. SPLAY_LINKLEFT(head, __right, field); \
  243. } else if (__comp > 0) { \
  244. __tmp = SPLAY_RIGHT((head)->sph_root, field); \
  245. if (__tmp == NULL) \
  246. break; \
  247. if (__comp > 0) { \
  248. SPLAY_ROTATE_LEFT(head, __tmp, field); \
  249. if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
  250. break; \
  251. } \
  252. SPLAY_LINKRIGHT(head, __left, field); \
  253. } \
  254. } \
  255. SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
  256. }
  257. #define SPLAY_NEGINF -1
  258. #define SPLAY_INF 1
  259. #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
  260. #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
  261. #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
  262. #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
  263. #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
  264. : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
  265. #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
  266. : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
  267. #define SPLAY_FOREACH(x, name, head) \
  268. for ((x) = SPLAY_MIN(name, head); \
  269. (x) != NULL; \
  270. (x) = SPLAY_NEXT(name, head, x))
  271. /* Macros that define a red-back tree */
  272. #define RB_HEAD(name, type) \
  273. struct name { \
  274. struct type *rbh_root; /* root of the tree */ \
  275. }
  276. #define RB_INITIALIZER(root) \
  277. { NULL }
  278. #define RB_INIT(root) do { \
  279. (root)->rbh_root = NULL; \
  280. } while (0)
  281. #define RB_BLACK 0
  282. #define RB_RED 1
  283. #define RB_ENTRY(type) \
  284. struct { \
  285. struct type *rbe_left; /* left element */ \
  286. struct type *rbe_right; /* right element */ \
  287. struct type *rbe_parent; /* parent element */ \
  288. int rbe_color; /* node color */ \
  289. }
  290. #define RB_LEFT(elm, field) (elm)->field.rbe_left
  291. #define RB_RIGHT(elm, field) (elm)->field.rbe_right
  292. #define RB_PARENT(elm, field) (elm)->field.rbe_parent
  293. #define RB_COLOR(elm, field) (elm)->field.rbe_color
  294. #define RB_ROOT(head) (head)->rbh_root
  295. #define RB_EMPTY(head) (RB_ROOT(head) == NULL)
  296. #define RB_SET(elm, parent, field) do { \
  297. RB_PARENT(elm, field) = parent; \
  298. RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
  299. RB_COLOR(elm, field) = RB_RED; \
  300. } while (0)
  301. #define RB_SET_BLACKRED(black, red, field) do { \
  302. RB_COLOR(black, field) = RB_BLACK; \
  303. RB_COLOR(red, field) = RB_RED; \
  304. } while (0)
  305. #ifndef RB_AUGMENT
  306. #define RB_AUGMENT(x)
  307. #endif
  308. #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
  309. (tmp) = RB_RIGHT(elm, field); \
  310. if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \
  311. RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
  312. } \
  313. RB_AUGMENT(elm); \
  314. if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
  315. if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
  316. RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
  317. else \
  318. RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
  319. } else \
  320. (head)->rbh_root = (tmp); \
  321. RB_LEFT(tmp, field) = (elm); \
  322. RB_PARENT(elm, field) = (tmp); \
  323. RB_AUGMENT(tmp); \
  324. if ((RB_PARENT(tmp, field))) \
  325. RB_AUGMENT(RB_PARENT(tmp, field)); \
  326. } while (0)
  327. #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
  328. (tmp) = RB_LEFT(elm, field); \
  329. if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \
  330. RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
  331. } \
  332. RB_AUGMENT(elm); \
  333. if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
  334. if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
  335. RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
  336. else \
  337. RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
  338. } else \
  339. (head)->rbh_root = (tmp); \
  340. RB_RIGHT(tmp, field) = (elm); \
  341. RB_PARENT(elm, field) = (tmp); \
  342. RB_AUGMENT(tmp); \
  343. if ((RB_PARENT(tmp, field))) \
  344. RB_AUGMENT(RB_PARENT(tmp, field)); \
  345. } while (0)
  346. /* Generates prototypes and inline functions */
  347. #define RB_PROTOTYPE(name, type, field, cmp) \
  348. void name##_RB_INSERT_COLOR(struct name *, struct type *); \
  349. void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
  350. struct type *name##_RB_REMOVE(struct name *, struct type *); \
  351. struct type *name##_RB_INSERT(struct name *, struct type *); \
  352. struct type *name##_RB_FIND(struct name *, struct type *); \
  353. struct type *name##_RB_NEXT(struct type *); \
  354. struct type *name##_RB_MINMAX(struct name *, int); \
  355. \
  356. /* Main rb operation.
  357. * Moves node close to the key of elm to top
  358. */
  359. #define RB_GENERATE(name, type, field, cmp) \
  360. void \
  361. name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
  362. { \
  363. struct type *parent, *gparent, *tmp; \
  364. while ((parent = RB_PARENT(elm, field)) && \
  365. RB_COLOR(parent, field) == RB_RED) { \
  366. gparent = RB_PARENT(parent, field); \
  367. if (parent == RB_LEFT(gparent, field)) { \
  368. tmp = RB_RIGHT(gparent, field); \
  369. if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
  370. RB_COLOR(tmp, field) = RB_BLACK; \
  371. RB_SET_BLACKRED(parent, gparent, field);\
  372. elm = gparent; \
  373. continue; \
  374. } \
  375. if (RB_RIGHT(parent, field) == elm) { \
  376. RB_ROTATE_LEFT(head, parent, tmp, field);\
  377. tmp = parent; \
  378. parent = elm; \
  379. elm = tmp; \
  380. } \
  381. RB_SET_BLACKRED(parent, gparent, field); \
  382. RB_ROTATE_RIGHT(head, gparent, tmp, field); \
  383. } else { \
  384. tmp = RB_LEFT(gparent, field); \
  385. if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
  386. RB_COLOR(tmp, field) = RB_BLACK; \
  387. RB_SET_BLACKRED(parent, gparent, field);\
  388. elm = gparent; \
  389. continue; \
  390. } \
  391. if (RB_LEFT(parent, field) == elm) { \
  392. RB_ROTATE_RIGHT(head, parent, tmp, field);\
  393. tmp = parent; \
  394. parent = elm; \
  395. elm = tmp; \
  396. } \
  397. RB_SET_BLACKRED(parent, gparent, field); \
  398. RB_ROTATE_LEFT(head, gparent, tmp, field); \
  399. } \
  400. } \
  401. RB_COLOR(head->rbh_root, field) = RB_BLACK; \
  402. } \
  403. \
  404. void \
  405. name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
  406. { \
  407. struct type *tmp; \
  408. while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
  409. elm != RB_ROOT(head)) { \
  410. if (RB_LEFT(parent, field) == elm) { \
  411. tmp = RB_RIGHT(parent, field); \
  412. if (RB_COLOR(tmp, field) == RB_RED) { \
  413. RB_SET_BLACKRED(tmp, parent, field); \
  414. RB_ROTATE_LEFT(head, parent, tmp, field);\
  415. tmp = RB_RIGHT(parent, field); \
  416. } \
  417. if ((RB_LEFT(tmp, field) == NULL || \
  418. RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
  419. (RB_RIGHT(tmp, field) == NULL || \
  420. RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
  421. RB_COLOR(tmp, field) = RB_RED; \
  422. elm = parent; \
  423. parent = RB_PARENT(elm, field); \
  424. } else { \
  425. if (RB_RIGHT(tmp, field) == NULL || \
  426. RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
  427. struct type *oleft; \
  428. if ((oleft = RB_LEFT(tmp, field)))\
  429. RB_COLOR(oleft, field) = RB_BLACK;\
  430. RB_COLOR(tmp, field) = RB_RED; \
  431. RB_ROTATE_RIGHT(head, tmp, oleft, field);\
  432. tmp = RB_RIGHT(parent, field); \
  433. } \
  434. RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
  435. RB_COLOR(parent, field) = RB_BLACK; \
  436. if (RB_RIGHT(tmp, field)) \
  437. RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
  438. RB_ROTATE_LEFT(head, parent, tmp, field);\
  439. elm = RB_ROOT(head); \
  440. break; \
  441. } \
  442. } else { \
  443. tmp = RB_LEFT(parent, field); \
  444. if (RB_COLOR(tmp, field) == RB_RED) { \
  445. RB_SET_BLACKRED(tmp, parent, field); \
  446. RB_ROTATE_RIGHT(head, parent, tmp, field);\
  447. tmp = RB_LEFT(parent, field); \
  448. } \
  449. if ((RB_LEFT(tmp, field) == NULL || \
  450. RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
  451. (RB_RIGHT(tmp, field) == NULL || \
  452. RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
  453. RB_COLOR(tmp, field) = RB_RED; \
  454. elm = parent; \
  455. parent = RB_PARENT(elm, field); \
  456. } else { \
  457. if (RB_LEFT(tmp, field) == NULL || \
  458. RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
  459. struct type *oright; \
  460. if ((oright = RB_RIGHT(tmp, field)))\
  461. RB_COLOR(oright, field) = RB_BLACK;\
  462. RB_COLOR(tmp, field) = RB_RED; \
  463. RB_ROTATE_LEFT(head, tmp, oright, field);\
  464. tmp = RB_LEFT(parent, field); \
  465. } \
  466. RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
  467. RB_COLOR(parent, field) = RB_BLACK; \
  468. if (RB_LEFT(tmp, field)) \
  469. RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
  470. RB_ROTATE_RIGHT(head, parent, tmp, field);\
  471. elm = RB_ROOT(head); \
  472. break; \
  473. } \
  474. } \
  475. } \
  476. if (elm) \
  477. RB_COLOR(elm, field) = RB_BLACK; \
  478. } \
  479. \
  480. struct type * \
  481. name##_RB_REMOVE(struct name *head, struct type *elm) \
  482. { \
  483. struct type *child, *parent, *old = elm; \
  484. int color; \
  485. if (RB_LEFT(elm, field) == NULL) \
  486. child = RB_RIGHT(elm, field); \
  487. else if (RB_RIGHT(elm, field) == NULL) \
  488. child = RB_LEFT(elm, field); \
  489. else { \
  490. struct type *left; \
  491. elm = RB_RIGHT(elm, field); \
  492. while ((left = RB_LEFT(elm, field))) \
  493. elm = left; \
  494. child = RB_RIGHT(elm, field); \
  495. parent = RB_PARENT(elm, field); \
  496. color = RB_COLOR(elm, field); \
  497. if (child) \
  498. RB_PARENT(child, field) = parent; \
  499. if (parent) { \
  500. if (RB_LEFT(parent, field) == elm) \
  501. RB_LEFT(parent, field) = child; \
  502. else \
  503. RB_RIGHT(parent, field) = child; \
  504. RB_AUGMENT(parent); \
  505. } else \
  506. RB_ROOT(head) = child; \
  507. if (RB_PARENT(elm, field) == old) \
  508. parent = elm; \
  509. (elm)->field = (old)->field; \
  510. if (RB_PARENT(old, field)) { \
  511. if (RB_LEFT(RB_PARENT(old, field), field) == old)\
  512. RB_LEFT(RB_PARENT(old, field), field) = elm;\
  513. else \
  514. RB_RIGHT(RB_PARENT(old, field), field) = elm;\
  515. RB_AUGMENT(RB_PARENT(old, field)); \
  516. } else \
  517. RB_ROOT(head) = elm; \
  518. RB_PARENT(RB_LEFT(old, field), field) = elm; \
  519. if (RB_RIGHT(old, field)) \
  520. RB_PARENT(RB_RIGHT(old, field), field) = elm; \
  521. if (parent) { \
  522. left = parent; \
  523. do { \
  524. RB_AUGMENT(left); \
  525. } while ((left = RB_PARENT(left, field))); \
  526. } \
  527. goto color; \
  528. } \
  529. parent = RB_PARENT(elm, field); \
  530. color = RB_COLOR(elm, field); \
  531. if (child) \
  532. RB_PARENT(child, field) = parent; \
  533. if (parent) { \
  534. if (RB_LEFT(parent, field) == elm) \
  535. RB_LEFT(parent, field) = child; \
  536. else \
  537. RB_RIGHT(parent, field) = child; \
  538. RB_AUGMENT(parent); \
  539. } else \
  540. RB_ROOT(head) = child; \
  541. color: \
  542. if (color == RB_BLACK) \
  543. name##_RB_REMOVE_COLOR(head, parent, child); \
  544. return (old); \
  545. } \
  546. \
  547. /* Inserts a node into the RB tree */ \
  548. struct type * \
  549. name##_RB_INSERT(struct name *head, struct type *elm) \
  550. { \
  551. struct type *tmp; \
  552. struct type *parent = NULL; \
  553. int comp = 0; \
  554. tmp = RB_ROOT(head); \
  555. while (tmp) { \
  556. parent = tmp; \
  557. comp = (cmp)(elm, parent); \
  558. if (comp < 0) \
  559. tmp = RB_LEFT(tmp, field); \
  560. else if (comp > 0) \
  561. tmp = RB_RIGHT(tmp, field); \
  562. else \
  563. return (tmp); \
  564. } \
  565. RB_SET(elm, parent, field); \
  566. if (parent != NULL) { \
  567. if (comp < 0) \
  568. RB_LEFT(parent, field) = elm; \
  569. else \
  570. RB_RIGHT(parent, field) = elm; \
  571. RB_AUGMENT(parent); \
  572. } else \
  573. RB_ROOT(head) = elm; \
  574. name##_RB_INSERT_COLOR(head, elm); \
  575. return (NULL); \
  576. } \
  577. \
  578. /* Finds the node with the same key as elm */ \
  579. struct type * \
  580. name##_RB_FIND(struct name *head, struct type *elm) \
  581. { \
  582. struct type *tmp = RB_ROOT(head); \
  583. int comp; \
  584. while (tmp) { \
  585. comp = cmp(elm, tmp); \
  586. if (comp < 0) \
  587. tmp = RB_LEFT(tmp, field); \
  588. else if (comp > 0) \
  589. tmp = RB_RIGHT(tmp, field); \
  590. else \
  591. return (tmp); \
  592. } \
  593. return (NULL); \
  594. } \
  595. \
  596. struct type * \
  597. name##_RB_NEXT(struct type *elm) \
  598. { \
  599. if (RB_RIGHT(elm, field)) { \
  600. elm = RB_RIGHT(elm, field); \
  601. while (RB_LEFT(elm, field)) \
  602. elm = RB_LEFT(elm, field); \
  603. } else { \
  604. if (RB_PARENT(elm, field) && \
  605. (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
  606. elm = RB_PARENT(elm, field); \
  607. else { \
  608. while (RB_PARENT(elm, field) && \
  609. (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
  610. elm = RB_PARENT(elm, field); \
  611. elm = RB_PARENT(elm, field); \
  612. } \
  613. } \
  614. return (elm); \
  615. } \
  616. \
  617. struct type * \
  618. name##_RB_MINMAX(struct name *head, int val) \
  619. { \
  620. struct type *tmp = RB_ROOT(head); \
  621. struct type *parent = NULL; \
  622. while (tmp) { \
  623. parent = tmp; \
  624. if (val < 0) \
  625. tmp = RB_LEFT(tmp, field); \
  626. else \
  627. tmp = RB_RIGHT(tmp, field); \
  628. } \
  629. return (parent); \
  630. }
  631. #define RB_NEGINF -1
  632. #define RB_INF 1
  633. #define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
  634. #define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
  635. #define RB_FIND(name, x, y) name##_RB_FIND(x, y)
  636. #define RB_NEXT(name, x, y) name##_RB_NEXT(y)
  637. #define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
  638. #define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
  639. #define RB_FOREACH(x, name, head) \
  640. for ((x) = RB_MIN(name, head); \
  641. (x) != NULL; \
  642. (x) = name##_RB_NEXT(x))
  643. #endif /* _SYS_TREE_H_ */